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The main effects on the dynamics of a liquid bridge due to the presence of an outer 
liquid, as occur in experiments using the Plateau-tank technique, are considered. The 
one-dimensional nonlinear model developed here allows us to perform the computation 
of both breaking processes and oscillatory motions of slender liquid bridges, although 
in this paper only the results concerning breaking processes are reported. Additionally, 
the oscillatory motions are studied both experimentally and by using a new linear 
model. Results from both sources show good agreement. 

1. Introduction 
Recent availability of space experiments on fluid mechanics is giving rise to interest 

in liquid behaviour studies in microgravity conditions. One of the fluid configurations 
receiving increasing attention in these experiments is the liquid bridge. This is 
because of the various valuable uses to which it can be put (Provost & Joyal 1972; 
Leybold-Heraeus 1977). Some theoretical models have already been developed for 
studying static behaviour (Gillette & Dyson 1971; Martinez 1976), and dynamic 
response to purely mechanical disturbances (Da Riva & Meseguer 1978; Harriot & 
Brown 1983; Meseguer 1983a, b), prior to more complex investigations, taking 
thermal, electrical and other disturbances (Napolitano 1978; Da Riva & Alvarez 
Pereira 1982) into account. An extensive, up-to-date review of the contributions to 
these subjects can be found in Meseguer & Sanz (1985). 

The expense and difficulty involved in performing space experiments is one of the 
reasons why intensive development of experimental support is carried out on Earth, 
so that in-flight experiments can be prepared as completely as possible beforehand. 
Each techniqueemployed inperformingon-Earth experiments hasits own advantages, 
drawbacks and restrictions. One of these techniques is neutral buoyancy, the so-called 
Plateau-tank simulation, in which the liquid bridge is surrounded by an outer liquid 
(bath) to compensate for the hydrostatic pressure along the interface. This technique 
has been chosen several times by experimenters (Mason 1970; Erle, Gillette & Dyson 
1970; Carruthers & Grass0 1972; Coriell, Hardy & Cordes 1977; Sanz 1983; Sanz & 
Martinez 1983), for its simplicity and low demand on highly sophisticated and 
expensive equipment, amongst other reasons. However, in most cases, when experi- 
mental and theoretical results are compared, the bath influence has not been taken 
into account; this is valid in static phenomena but not completely applicable when 
dynamic processes are involved. 

On the other hand, in the above-mentioned theoretical models the liquid bridge 
should be surrounded by a vacuum or a gas with far lower density than the liquid, 
an assumption which is not applicable to neutral-buoyancy experiments. Although 
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some models dealing with a liquid bridge surrounded by an outer fluid can be found 
in linear-jet-stability theory (Levich 1962; Phinney 1973), they are not relevant to 
this study because they only retain outer fluid convective terms, ignoring inertial 
ones, hence not giving a suitable estimation of surrounded-liquid-bridge dynamics. 
Other studies (Tomotika 1935; Bauer 1982), based also on the jet theory, but 
including the appropriate terms, deal with resonant frequencies and linear stability 
of infinite surrounded liquid columns. In  order to compare the results from the 
above-mentioned models with those of finite liquid bridges, these authors should 
assume that the disks are placed in zero-axial-velocity sections of the jet or column, 
but this implies that the three-phase contact line can move freely over the disks, since 
the jet theory is unable to fulfil both the zero-normal-velocity and anchored-interface 
conditions in the same section. On the contrary, from an experimental point of view, 
an anchored contact line is far more realistic than a free one, and, according to 
Meseguer (1983a), the boundary conditions imposed strongly affect results : charac- 
teristic evolution times in the liquid-bridge problem are significantly higher than 
those obtained from the capillary-jet theory. 

The aim of this paper is to analyse the influence of the outer liquid on the dynamics 
of the liquid bridge. There are three parts: first, the breaking process is studied by 
means of a nonlinear one-dimensional model ; secondly, oscillation motions are 
analysed using a new linear three-dimensional model ; finally, there is an experimental 
study of the resonant frequencies and results are compared with predictions obtained 
in the second part. Accounts of experiments on breaking processes can be found in 
Meseguer & Sanz (1985). 

In  this paper, the densities of the inner and the outer liquids are assumed to be 
different, in order to find out the influence of the density ratio, so that a hypothesis 
of absence of body forces, like gravity, can be made to avoid the effect of hydrostatic 
pressure on the interface shape. Nevertheless, if both liquids have the same density, 
as in Plateau’s configurations, hydrostatic pressure is balanced along the interface 
and the aforementioned hypothesis becomes unnecessary. 

The effect of the viscosity on the liquid-bridge dynamics (oscillation motion and 
breaking) can be separated in two parts: inside the bulk liquid and at  its interface. 
The effects in the bulk liquid are small in the experimental configurations more widely 
used in simulated microgravity, as demonstrated by Meseguer (1983a), and it seems 
reasonable to assume here that shear stresses at  the interface are of the same 
order and thus negligible. However, to demonstrate that point, further work would 
be required. 

2. General equations for the axisymmetric liquid bridge 
Let us consider a liquid bridge held by surface-tension forces between two parallel, 

coaxial, equal-diameter solid disks, surrounded by an outer liquid immiscible with 
the inner one, and limited by two plane ring elements, prolongation of the disks, 
and by a circular-cross-section cylinder, coaxial with the liquid bridge, as shown in 
figure 1. 

The problem to be solved concerns the evolution of the previously described 
configuration, under axisymmetric disturbances. In this paper the study is limited 
to processes in which the initial interface shape differs slightly from a cylinder. 

To perform this study, widely used assumptions (Meseguer 1983a) are introduced : 
(a) movements inside both the liquid bridge and the bath are due only to 

capillary-pressure gradients generated by the deformation of the interface ; 
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FIUURE 1. Geometry and coordinate system for the surrounded liquid bridge. 

(b) as mentioned above, inertial forces due to a non-uniform displacement of the 

(c) the problem is considered to be independent of the azimuthal coordinate, since 

(d )  the densities of both liquids, as well as interface properties (surface tension), 

Under such assumptions the non-dimensional equations for the inviscid, axisym- 

liquid bridge as a whole are absent; 

we are only dealing with axisymmetric configurations and perturbations ; 

are uniform and constant. 

metric, non-rotating flow in cylindrical coordinates are 

(2.1) 
U* 

Gr+--+ w; = 0, 
r 

pl,P' q+ u*u;+ W*U{ = --, 
d 

W{+u3Wr+ w*w; = --, EP' 
P* 

where U*, W* and P represent the non-dimensional radial and axial velocities and 
pressure respectively, the superscriptj refers to the different liquids: 'i ', liquid bridge, 
and 'o', bath, and the subscripts t ,  rand z mean differentiation with respect to time, 
radial or axial coordinates respectively. In these expressions, lengths have been made 
dimensionless with disk radius R, velocities with (a/p'R)! (where v is the interface 
tension between the two liquids and pi the density of the inner liquid), time with 
(piR3/a)t  and reduced gauge pressure ( P i - P ) / p i  with a/p'R, where 8' is the 
pressure a t  each point and 8' a reference pressure. 

The boundary conditions at the solid surfaces are 

W ( r ,  * A , t )  = 0, 

UO(B, z, t )  = 0, 
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A = L/2R being the slenderness of the liquid bridge and B the dimensionless radius 
of the external cylindrical container (wall position). A t  the axis of symmetry 

U'(O,z, t )  = 0, (2.6) 

W',(O, 2,  t )  = 0. (2.7) 

A t  the interface, r = F(z,  t ) ,  two conditions hold. The first expresses the normal force 
balance between the capillary pressure and the pressure jump across the interface. 
In dimensionless form, 

(2.8) 
pi-po = (1  +E)/Jl-& 

( 1 + F $  

The second condition, stating that the interface is a material surface, that is, the 
mass-flow rate through i t  is zero, yields 

4- U*+ W'F, = 0 .  

P( & A ,  t )  = 1 ,  

(2.9) 

(2.10) 

The interface has its own conditions, showing that the contact line remains 
anchored to the disk edges, 

and that the volume enclosed remains the same, in this case the volume of a cylinder, 
A J-, P ( z ,  t )  dz = 2A. (2.11) 

The formulation of the problem is completed by the setting of suitable initial 

(2.12) conditions, i.e. 
F(z ,  0 )  = Fo(z), WJ(r ,  z , O )  = UJ(r, z, 0) = 0. 

The complexity of the system seems not to allow of an analytical solution, one of 
the main problems rising from the anchoring condition. If this condition is removed, 
the submerged-jet configuration would be brought about. 

3. One-dimensional inviscid slice (ODIS) model 
To solve the surrounded-liquid-bridge problem, a one-dimensional inviscid slice 

(ODIS) model, already used in isolated cylindrical and non-cylindrical liquid-bridge- 
breaking processes, both in zero-gravity and small-axial-gravity conditions (Meseguer 
1983a, b ;  Meseguer & Sanz 1985; Meseguer, Sanz & Rivas 1983; Rivas & Meseguer 
1984), has been employed. General considerations on numerical and asymptotic 
studies, validity of the solutions, etc. can be found in these papers. Only specific 
differences of surrounded problem are treated here. 

In this paragraph, the applicability conditions of the one-dimensional model to the 
surrounded-liquid-bridge problem are deduced. The influence of the outer liquid is 
discussed through a linear analysis. A numerical integration of the nonlinear 
equations is made, and the results obtained for the breaking process are presented, 
showing the quantitative influence of the outer liquid on global quantities which can 
easily be experimentally measured (such as breaking time and volume of drops 
resulting from breaking). Finally, some considerations on nonlinear asymptotic 
analysis are made. 

3.1. One-dimensional hypothesis 

The one-dimensional hypothesis consists in assuming axial velocity as independent 
of the radial coordinate. Its suitability for the study of the stability and the breaking 
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process of non-surrounded slender liquid bridges has been deduced by Meseguer 
( 1 9 8 3 ~ )  by using an order-of-magnitude analysis. Results (Meseguer et al. 1983 ; 
Meseguer & Sanz 1985) show that it is valid a t  least for A > 2. A similar approach 
can be used to obtain conditions of applicability for surrounded liquid bridges. Let 
U: and Wz respectively represent radial and axial characteristic velocities of the outer 
liquid; then Uz - Wg(B- 1) R / L  can be deduced from the continuity equation (2.1). 
Since we are dealing with an irrotational flow, V x V = 0; then 

Uz A,. Wz 
- N  

L ( B - 1 ) R '  

where Ar W: stands for the characteristic radial variation of the axial velocity. Thus 
the ratio of the convective terms appearing in (2.3) is 

For the case we are interested in, the breaking process of slender liquid bridges (in 
which A - x ) ,  this inequality is satisfied if B -  1 = O(1).  The condition for the inner 
flow could be found replacing ( B - 1 ) R  by inner characteristic radial 
yielding v'wr 1 ww', - a + 1 .  

In consequence, according to (3.2) and (3.3) the term that contains 
eliminated in (2.3), to obtain 

Pp' 
W{+ ww; = --. 

P j 

length R ,  

(3.3) 

Uj can be 

(3.4) 

As can easily be deduced, (3.1) implies that AT W:/ W: - ( B -  1)2/4A2 4 1 ; Wo may 
then be considered to be independent of the radial coordinate. An analogous condition 
for the inner flow is (A,. Wc/ Wc)/4A2 6 1 .  A relationship between Uj and Wj can then 
be obtained by radial integration of the continuity equation (2 .1) :  

U(F, Z, t)  = -+FWz, (3.5) 

(B2-P) w; 
2F ' 

Uo(F, Z, t )  = 

By substitution of these values in (2.9), equations relating F and Wj for the inner 
and outer liquid, and which do not contain 0, are obtained: 

(mt+(J -W)Z  = 0, 

(P) t+[ (F2-Bz)  WO], = 0. 

From these equations a relationship between V and Wo is deduced: 

which is obvious from mass-conservation considerations in a cross-section. This 
expression allows us to reduce the problem to two equations with two unknowns F 
and w', but even in this form, the problem is too complex and no analytical solution 
seems obtainable. However, this formulation simplifies, to a great extent, both the 
linear analysis and the numerical treatment of the problem. 
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3.2. Linear analysis 
The above formulation can be simplified if small velocities and deformations of the 
liquid bridge are assumed, allowing us to  linearize the equations. Let B be a small 
parameter, measuring the initial deviation of the interface from the cylinder. 
Assuming the time dependence to be of the form eat, the variables of the problem 
can be expressed as 

W3' = E ePtwf, 

Po = E e"tp0, 

F = 1 + E  eat f,  

P = 1 + E  eetpi. 
(3.10) 

The equations of motion (3.4), (3.7) and the conditions (2.4), (2.8), (2.10) and (3.9) 
can be written as 

Qwj = -r P Pi 
d '  

(3.11) 

f,,+f = PO-Pi, (3.12) 

2 q +  w; = 0 (3.13) 

d wo = - 
1-B2 

(3.14) 

wj(+_A) = 0, f(  + A )  = 0. (3.15) 

The homogeneous system (3.11)-(3.15) of five equations and five unknowns can be 
reduced to an equation with one unknown such as 

where 

wi,,,, + 4, + 252; wi = 0, (3.16) 

(3.17) 

and p = po/pi. I n  this expression 52, is the corresponding value of 52 when there is 
no bath ( p  = 0). The second boundary condition of (3.15) transformed with the aid 
of (3.13) yields 

& ( & A )  = w ; ( ~ A )  = 0. (3.18) 

The problem defined by (3.16) and (3.18) is formally the same as that solved by 
Meseguer (1983~)  for the non-surrounded liquid bridge. It is an eigenvalue problem 
having non-trivial solutions only for some values of 52, related to  the parameter A 
through boundary conditions. Once a,, a function only of A ,  is calculated, the time 
exponent 8 can be deduced from (3.17) for each value of the parameters p and B. 
The non-surrounded-bridge problem has only two possible kinds of solutions : 
oscillatory movements if 52, is an imaginary number, breaking process if it  is a real 
number, and there are no mixed motions in agreement with the inviscid character 
of the model. These characteristics still remain in the surrounded-liquid-bridge 
problem, since both p and B have real values. 

I n  expressions giving interface shape and axial-velocity dependence on the z- and 
t-coordinates (Meseguer 1983a), bath parameters appear only in the exponent of the 
time-dependent factor of the solution, 52. Thus, in the linear approximation, the 
influence of the bath is limited to a timescale change, defined by (3.17), and no 
differences in interface shape appear between surrounded and non-surrounded 
bridges. 
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A simple expression of bath influence in breaking process can be deduced by 
comparing the linear breaking time 

(3.19) 

bfmin stands for the minimum value off, and y is the growth factor) with the linear 
breaking time of a non-surrounded liquid bridge, qbO, which yields 

(3.20) 

This result summarizes the action of the bath. The larger the density of the outer 
fluid or the closer the position of the wall, the longer the breaking time will be. This 
phenomenon could be explained in terms of energy interchange between the interface 
and the fluids. The energy supplied by deformation of the interface, proportional to 
Qi, is transferred to kinetic energy in the inner liquid only, if no bath exists. If the 
liquid bridge is surrounded, the same deformation enerm should be shared by both 
the inner liquid, whose kinetic energy is proportional to Q2, and by the bath whose 
kinetic energy is proportional to Q2p/(B2- l) ,  since its velocity is proportional to 
Q/(B2-  l),  its volume to B2- 1 and its density to p. This interfacial energy sharing 
explains why the movement of oscillation, as well as breaking, is slowed down. The 
behaviour predicted by this and other linear models will be compared in 54. 

3.3. Nonlinear numerical analysis 
The general one-dimensional equations of motion for the liquid bridge and the bath 
((2.8), (3.4), (3.7) and 3.9)) have been integrated numerically by using the Lax- 
Wendroff method (Roache 1972 ; Mitchell & Griffiths 1980). This finite-difference 
method has been already employed in the case of a non-surrounded liquid bridge 
(Meseguer 1 9 8 3 ~ ;  Meseguer et al. 1983; Meseguer & Sanz 1985). Before introducing 
numerical schemes, some manipulation of the general equations is needed in order 
to simplify the formulation of the problem. Thus the pressure jump can be eliminated 
by substituting the expressions for Po and Pi, obtained from (3.4), in (2.8), which is 
transformed into 

- (W,i + W' Wf) + p( W: + WOW;) = P,, (3.21) 

where P is the capillary pressure, defined by the right-hand side of (2.8). Further 
simplification i, obtained by using new variables defined as S = F2 and Q = P W ,  
proportional respectively to the cross-sectional area and the axial momentum of a 
slice of the liquid bridge. The outer axial velocity, from (3.9), is Wo = Q / ( S -  B2) ,  
and the equations of motion become 

St+&, = 0, (3.22) 

where the capillary pressure 

P = 4(2s+s;--sSszz) (4S+S3-!. (3.24) 

In (3.23) the underlined terms take into account the existence of the bath. Boundary 
conditions are 

S ( + A , t )  = 1, Q ( * A , t )  = 0. (3.25) 



108 A .  Sanz 

Initial conditions strate that the liquid bridge, at rest, is slightly disturbed by 
imposing an antisymmetric deformation to the interface : 

(3.26) 
RZ 

S(z,O) = 1 + ~ ( ~ - 2 )  sin-, Q(z,O) = 0 .  A 

The initial shape is assumed to be sinusoidal in the cross-sectional area S, so that 
the volume is conserved; with this choice E gives the measure of the deformation (in 
the radius) of the neck of the liquid bridge. 

Equation (3.23) may be expressed in a more suitable way by 

Qt = Q:-W(Q?-PZ)t (3.27) 

where 

and 

PS w =  
B2-S(1 - p ) ’  

$p=- Q2 

B 2 - S ’  

(3.28) 

(3.29) 

(3.30) 

If p = 0 the non-surrounded problem is recovered. The problem to be solved is 
reduced to (3.22) and (3.27) with conditions (3.25) and (3.26). The numerical scheme 
already developed for non-surrounded bridges (Meseguer 1983 a )  still holds, although 
the axial-momentum equation is transformed because some terms, taking into 
account the bath influence, are added. Owing to the resemblance between the 
numerical problems involved in the computations of the dynamic of liquid zones in 
both cases (with and without bath), a wide use of the methods already developed in 
the latter has been made. 

The implemented program has been run for selected values of the slenderness A ,  
the initial disturbance E ,  and the bath parameters : density ratio p and wall position 
B. The large number of parameters being considered generates a large amount of 
possible configurations. Thus the study has been limited to significant values of p and 
B, and also only to the most interesting phenomenon - the breaking process. It should 
be pointed out that stability limits are not influenced by the outer liquid since they 
are a static property. 

In table 1 some results for the configurations solved are shown. These are the main 
data from a global point of view : the breaking time Tb (time from start till the neck 
rupture) and the partial breaking volume V, (volume of liquid placed between the 
neck and one of the disks to total volume ratio at the breaking time). These (especially 
the latter) have the virtue of being more easily checked experimentally than other 
characteristics also obtained from the slice model - for instance the neck evolution 
versus time or the velocity field. 

The results are interesting in that they show clearly the influence of the bath 
parameters, which can be seen by comparing the results obtained in every case with 
the corresponding result for the same non-surrounded bridge under an identical initial 
perturbation. So, the variation of breaking time Tb of a surrounded liquid bridge 
compared with the value Tbo for an isolated one versus the position B of the wall is 
shown in figure 2, together with the linear prediction. As B increases, the breaking 
time Tb approaches that of a non-surrounded bridge, Tbo, and they are equal when 
B+m, that is, no influence of the bath occurs in this limit, which is obviously 
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A = 3.07, E =  0.2 A = 3.14, E = 0.2 A = 3.2, E = 0.2 A = 3.1, E =0 .3  A = 3.1, E =0.4 

P Tb vp Tb vp Tb vp Tb vp Tb VP 

- 0 21.98 0.8554 13.62 0.8491 11.52 0.8442 8.40 0.8539 4.84 0.8566 
5.99 0.8702 1.4 1 30.69 0.8696 18.74 0.8663 - - - - 

1.5 1 28.73 0.8661 17.60 0.8621 14.75 0.8574 - - 5.79 0.8678 
2.5 1 23.70 0.8580 14.65 0.8522 - - - - 5.12 0.8596 
2 1 24.92 0.8559 15.37 0.8546 12.96 0.8498 9.34 0.8588 5.31 0.8617 

- - - 6.07 0.8674 
- - - 7.02 0.8718 
- - - 5.08 0.8595 

2 3 29.95 0.8564 18.35 0.8611 - 
2 6 36.13 0.8700 22.04 0.8666 - 
2 0.5 23.50 0.8580 14.53 0.8521 - 

SB 0 0 A V 0 
TABLE 1. Slenderness A ,  initial perturbation amplitude B, wall position B, density ratio p,  
breaking time Tb, partial breaking volume V,, and symbol (SB) indicating the values of A and E in 
figures 2-5. 

unrealistic but in agreement with the character of the one-dimensional model, since 
according to this model both the axial velocity and the kinetic energy of the bath 
decrease as l / ( B a -  I ) .  However, it should be remembered that the applicability of 
the model is restricted by the condition (B- 1)2/4A2 < 1, the abovementioned limit 
B+-m being out of the range of applicability. 

On the other hand, the lowest values of wall position B are limited by geometrical 
constraints, at least by the radius of drops produced after the bridge-breaking if the 
inner liquid is not allowed to touch the lateral wall. The limit imposed by the drop 
radius is not reached during the breaking process because computing is stopped close 
to but before splitting occurs (Meseguer & Sanz 1985). Actually, in the computed 
breaking process, the final status of the liquid bridge is out of equilibrium (since it 
corresponds to a dynamic process), and the maximum interface radius in this 
situation ( - 1.4 R) is smaller than that of the largest drop produced at the breaking 
( - 1.5 R). Therefore, in the cases solved numerically B = 1.4 was taken as the lower 
limit, small enough to show clearly the effect of wall position, although perhaps too 
small for experimental purposes. Global behaviour of numerical results follows 
qualitatively the tendency predicted by the linear analysis. 

The influence of density ratio is shown in figure 2. In the limiting case p+O 
non-surrounded model values are reached, but the larger the value of p the longer 
the breaking time, owing to growth of outer fluid inertia. As there is no theoretical 
limit imposed by the one-dimensional model for values of p,  a wide range is taken 
into account for the sake of completion. 

Results showing the influence of bath parameters on partial breaking volumes are 
plotted in figure 3. If we consider that in some way the breaking volume is an integral 
evaluation of the final interface deformation, results demonstrate the small influence 
of the bath in the interface shape, below 1% within the range of experimental 
feasibility (B > 2 is a guess) and model applicability (B- 1)2/4A2 Q 1. This value is 
of the same order as the errors in most of the experiments reported. As B becomes 
smaller, the bath influence increases. We should remember that outer and inner axial 
speeds are related through a quotient involving the distance from the interface to 
the wall (3.9), so if this distance becomes very small, strong velocities and associated 
pressure gradients are generated in the outer fluid flow. 
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FIQURE 2. Variation of the breaking time Tb of a surrounded liquid bridge, (a) with the wall position 
B and (b )  with the density ratio p, compared with that of a non-surrounded bridge Tb0 of the same 
slenderness A and initial perturbation E .  (a) p = 1 ;  ( b )  B = 2. Solid line, one-dimensional linear 
model ; dashed lines, numerical results from nonlinear one-dimensional model ; symbols are defined 
in table 1 .  
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1 x 1 0  
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1 3 B 2 
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FIGURE 3. Variation of the partial breaking volume V, of a surrounded liquid bridge, (a )  with the 
wall position B and (b)  with the density ratio p,  compared with that of a non-surrounded bridge 
Vpo of the same slenderness A and initial perturbation E .  (a)  p = 1; (b)  B = 2. Symbols are 
defined in table 1.  
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FIGURE 4. Interface shapes, close to the breaking, of two liquid bridges of the same slenderness 
( A  = 3.14), starting with the same initial perturbation ( E  = 0.2), surrounded by a density-matched 
liquid (p  = 1). The lateral wall is placed at B = 1.4 (dashed line) and B = 2.5 (solid line) 
respectively. 

The effect of the wall position on the interface shape is seen in figure 4, which shows 
the deformation of two liquid bridges of the same A and equal initial perturbation 
E ,  but surrounded by a bath whose lateral wall is placed at  B = 1.4 and B = 2.5 
respectively. In the first case the effect of the wall can be seen quite clearly, the 
interface keeps close to i t  but a small gap exists, through which the outer liquid moves 
from the largest section towards the neighbourhood of the neck section. On the other 
hand, the wall avoids growing to the largest cross-section, which causes the neck to 
move towards the nearest disk, and thence partial breaking volumes increase. In the 
second case ( B  = 2.5) the interface shape is nearly the same as that of the 
non-surrounded liquid bridge, as reflected by the difference in the breaking volume, 
some 0.3 yo. 

To enhance the appreciation of the influence of the A-  and €-parameters, let us make 
some further considerations. As can be seen from the previous results, the linear 
theory and numerical results show a similar behaviour. This fact suggests the use of 
the relationship predicted by the linear analysis to reduce the numerical results. Let 
us denote the quantity [(Tb/Tbo)2- I] (B2-  l)/p as the reduced breaking time T, (in 
linear theory T,. = 1 ) .  If the reduced breaking time is plotted versus the parameter 
p / ( B 2 -  l ) ,  as shown in figure 5 ,  within each group of results, identified by the same 
A and E ,  two sets can be distinguished, depending on whether p or B varies. Their 
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FIQURE 5. Reduced breaking time [(Tb/Tb,)2- 11 (B2-  l)/p versus the parameter p/(B2- 1) .  
Symbols are defined in table 1. Solid (dashed) lines join points with the same density ratio p = 1 
(same position of the wall, B = 2). 

influence is different because of the roles they play: p is a parameter affecting the 
whole bath, whereas B induces a distributed effect, depending on the distance 
between the interface and the wall. In addition to the influence of p and B,  effects 
produced by A and e are also clearly shown. As could be foreseen from the behaviour 
in the non-surrounded case, as A and 8 increase, the reduced breaking time decreases; 
that is, the more unstable the initial configuration, the shorter the reduced breaking 
time. 

3.4. Nonlinear asymptotic analysis 
As deduced from the linear analysis, the first stability change, 52 = 0, occurs at the 
same point as that in the non-surrounded case, A =  n. The character of the 
bifurcation to unstable shapes and the dynamics in the neighbourhood of this point 
have been extensively studied, both numerically (Meseguer 1983 a )  and asymptotically 
(Rivas & Meseguer 1985) in the case of non-surrounded bridges. Following the same 
method as in the latter paper, it can be shown that the existence of an outer fluid 
does not modify the curve € ( A )  of unstable equilibrium shapes in the ( A ,  €)-diagram, 
and affects only the timescale of the motion in the same way as predicted by linear 
analysis (3.17). The idea is that unstable equilibrium shapes are determined by the 
static problem, that is, by the solutions of (3.24) with constant P. Therefore the outer 
liquid has no influence in them, and only plays a role in the dynamics. 
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4. Linear three-dimensional model 
The one-dimensional model analysed in $3  offers an approach to the study of the 

dynamics (oscillation motion and breaking process) of liquid bridges, although some 
conditions of validity should be satisfied, restraining to slender bridges the applicability 
of both linear and nonlinear approaches derived from this model. Concerning 
oscillatory motions, from the experimental point of view, slender liquid bridges 
present specific problems which can be avoided by using medium-length bridges, to 
which the applicability of the one-dimensional model is not directly drawn. A 
theoretical model of oscillations without this restriction is the infinite-column model 
(Bauer 1982), based on the capillary-jet theory. However, it is valid only for 
non-anchored liquid bridges, thus it does not satisfy simultaneously the two 
boundary conditions a t  the disks more usual in experiments (zero normal velocity 
and anchored interface). 

In this section, a three-dimensional linear model, without the abovementioned 
restrictions, is presented. As this model retains all the significant characteristics of 
the phenomenon (in the inviscid case), its results should be closer to reality than other 
models, which contain additional simplifying hypotheses. 

4.1. Linear analysis 
Let us take as starting point the formulation of the surrounded-liquid-bridge problem 
stated in $2. To solve the problem the formulation has been linearized, assuming small 
interface deformations and velocities, obtaining a free boundary problem for the 
pressure. As this kind of problem has no standard solution, the procedure to find the 
possible solutions will be as follows. As a first step, general solutions for both the inner 
and outer liquids, satisfying the boundary conditions at the solid surfaces and at  the 
axis of the bridge, are built up. In a second step the coefficients appearing in these 
solutions are calculated by using boundary conditions at the interface. 

In the same way as in $3.2, let E be a small parameter measuring the initial 
deviation of the interface from the cylinder. Assuming the dependence on time as eat, 
the variables of the problem can be expressed as follows: 

I uj = e Q t j ,  Wj = E eatwj, 

pi = 1 + E  eQtpi, PO = eatPo, 

F = l+eeatf .  

By substitution in the equations of $2, the problem reduces to 

U j  
u$+-+dz = 0, 

r 

Boundary conditions a t  the limiting surfaces are 

wqr, & A )  = 0, uO(B, 2 )  = 0, (4.5) 
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and at the axis of the bridge 

u'(0,z) = 0, dr(0, z )  = 0. (4-6) 

A t  the linearized interface position r = 1 boundary conditions are that the pressure 
jump should balance the capillary pressure 

f,, +f = -PV , 2) +PO(l, 4, (4.7) 

and kinematic compatibility, 
Qf-U'(l, z )  = 0. (4.8) 

Conditions for the interface itself are volume preservation ; 

A 

f- A 
fdz = 0, (4.9) 

and anchored triple contact line, 
f( & A )  = 0. (4.10) 

By substituting (4.3) and (4.4) in the continuity equation (4.2) and in (4.5) and (4.6), 
the problem is reduced to 

(4.11) Pj pir + 5 +pi, = 0, 

with the boundary conditions 

&r, + A )  = p',(O, z )  = p;(B, z )  = 0. (4.12) 

The more general solution of (4.1 1) for the inner and the outer problem which satisfies 
(4.12) is 

m 

n-1 
pi = g'+ z Qaa,Io(z,r) cosZ,(z+A), (4.13) 

m 
PO = go + E Q2b, [ K , ( E ,  r )  + I o ( Z n  r )  K1(zn B'] cos l,(z + A ) ,  (4.14) 

n-1 Il(znB) 

where I ,  = nx/2A; g', g", a,, b, are arbitrary constants, and Io ( z ) ,  Il(z), Ko(x), K,(z) 
are the modified Bessel functions of zero and first order (indicated by the subscript) 
and first and second kind. The expressions (4.13) and (4.14) satisfy the boundary 
conditions at the solid surfaces and at the axis of symmetry. Should they be the 
solutions of the problem, they must also satisfy the conditions at the interface, 
through which the arbitrary constants involved in the solution can be determined. 
Let us suppose that f is developed in a cosine series, like p'. Then 3n + 3 constants 
appear, n from f, 2n+ 1 in the pressure jump (a,, b,, gi-go), and two in integrating 
(4.7). To determine them there are three conditions ((4.9) and (4.10)), and three 
identities ((4.7) and (4.8)), which can be converted by orthogonality properties to 3n 
algebraic equations. In  this way an algebraic homogeneous system is built up, with 
the same number of equations and unknowns, it will then have solutions only for 
values of the parameters involved (a and A)  that satisfy some secular equation. 

Although in a general case it would be complicated to find the solutions of this 
problem, the algebraic manipulation involved in that case can be reduced somehow. 
Thus the velocities u5 can be eliminated from (4.8) by using (4.3), obtaining 

(4.15) 
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From the first equality of (4.15),fshould have the form 
m 

f=- C anZnll(Zn) COSZ,(Z+A), 
n-1 

and from the second equality a relationship between a, and b, is obtained: 

(4.16) 

(4.17) 

On the other hand, the condition of pressure balance at  the interface can be written 
with the aid of (4.13), (4.14) and (4.17): 

a3 

fZ,+f=-go- C Q2anIo(z,)Sn cosZn(z+A), (4.18) 
n-i 

where go = gi - go and 

(4.19) 

The solution of the ordinary differential equation (4.18) is 
m 

f =  -gO+a cosz+b sinz- C 122an~nlo(Zn) (l-Z;)-l cosZ,(z+A). (4.20) 
n-1 

At this point the problem is reduced to n+3 unknowns (an, go, a,  b )  plus n + 3  
conditions, ?z from the identity between (4.16) and (4.20), and three from (4.9) and 
(4.10). To identify (4.16) and (4.20) the developments of cosz and sinz in series of 
cos I ,  ( z  + A )  are needed : 

cosA 
sin z = 2 - C (1 - Zim+l)-l cos Z,,+,(z+ A ) ,  (4.21) 

A m-o 

00 cosz = - sin A [1+2 E ( l - Z ~ m ) - i c ~ ~ Z 2 m ( ~ + A ) ] .  

m-1 A (4.22) 

Equating the coefficients of cos Z,(z+A) in (4.16) and (4.20) with the aid of (4.21) and 
(4.22), the unknowns a, can be obtained: 

where 

-1 

a,, = 2a - sin A [.O.j,, - k,,] , 
A 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Now only 3 unknowns (a ,  b and go) and three conditions ((4.9) and (4.10)) remain. 
They can be written in the following way: 

00 

-g,+acosA+b sinA- X 122a,S,Io(Z,)(1-Z2,)-1 cosnn = 0, 

-g,+acosA-bsinA- C i22unSnIo(Zn)( l -Z~)- i  = 0, 

(4.27) 

(4.28) 

-g,A+asinA = 0. (4.29) 

n-1 

m 

n-i 
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With some manipulation go can be eliminated, and separated equations are obtained 
for a or b, depending on whether n is odd or even: 

where 

00 

b sin A + E Q2a2,+, i2,+, = 0, 
m-o 

(4.30) 

(4.31) 

(4.32) 

If in (4.30) and (4.31) the expressions for an given by (4.23) and (4.24) are substituted, 
two secular equations can be obtained : 

03 

tanA+Q2 X i2m+l(Q2j2m+l-k2m+l)-1 = 0, 
m-o 

m A-tanA -a2 x i2m(522j2m-k2m)-1 = 0. 
2 tan A m-1 

(4.33) 

(4.34) 

Conditions (4.34) or (4.33) hold respectively depending on whether the interface 
deformation is symmetric (n even) or antisymmetric with respect to the mean plane 
between disks. 

The time-dependent part of the solution, ent, gives the character of the evolution. 
In  general, the exponent 52 is a complex number, 52 = y + iw, where both the growth 
factor y and the pulsation w are real numbers; therefore, in principle, compound 
motions, in which oscillation and growth or decay motions are present together, could 
arise. However, it is possible to demonstrate that the only values of Q that can satisfy 
(4.33) or (4.34) are either real or imaginary numbers, in such a way that either periodic 
or growing and decaying solutions are allowed but compound motions are avoided, 
in agreement with the inviscid character of the model. Let us substitute 51 = y + iw 
in (4.33) and (4.34), and split them into real and imaginary parts. The latter, which 
comes from the expression under the summation sign, is similar in both equations, 
and can be written in the form: 

YW X In fln Io(zn) Il(ln) { [ ( y 2 - ~ 2 ) j n - - n 1 2 +  “@?jnl2I-’ = 0. (4.35) 
n 

As the sum is always a positive quantity, since all its terms are positive, the unique 
solutions allowed are y = 0 or/and w = 0, as stated above. In  addition to that, as 
in (4.33) and (4.34), the quantity Q2 appears, so two suitable values will be obtained, 
52 = f y in the case of growing motions, and 52 = f iy in oscillatory motions. These 
two solutions can be combined to satisfy initial conditions (zero velocity or zero 
deformation). 

4.2. Theoretical results 
The variation of w with A calculated by using (4.33) and (4.34), for the case of a 
non-surrounded bridge, is shown in figure 6. 

The values of A a t  which stability changes occur can be obtained by substituting 
52 = 0 in (4.33) and (4.34) to give 

tanA = 0, (4.36) 

tan A = A, (4.37) 
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2 4 
A 

FIGURE 6. Pulsation w versus slenderness, A in the first three oscillation modes of a non-surrounded 
liquid bridge obtained from several linearized models : three-dimensional (solid line), infinite 
columns (dashed line), one-dimensional (dotdashed line). n indicates the number of half-waves of 
the interface deformation. 

results already known in the case of jets and non-surrounded liquid bridges (Rayleigh 
1945; Martinez 1978). In the following we will discuss only the oscillatory solutions, 
although linear models are valid for the initial part of the breaking process as well. 
The interface deformation can be calculated by substituting the values of a, from 
(4.23) or (4.24) in (4.16), depending on the kind of deformation being considered, in 
the form 

cosA O0 

f(z) = - 2b - x l2m+14(22m+1) [52;J-2m+l-k2m+ll-1 cos l2m+1(z+AL 

f(z) = -2a - x '2, I l ( 4 m )  [a: J-2, - k2mI-l c 0 ~ 4 m ( z  + A ) ,  

(4.38) 

(4.39) 

A m-0 

sinA 

A m-1 

where 52, is one of the values that can be obtained as a solution of the corresponding 
equation for the value of A considered. With each 52, a different mode of oscillation 
is associated. The coefficients a and b can be deduced from the amplitude of the initial 
velocity field or deformation. In figure 7 two typical deformations are plotted. 

As indicated above, the time variation is given by the eot term, which represents 
either oscillatory or divergent motions, depending on 52. A difference in phase 
between the deformation and the velocity field exists in oscillation, showing the 
well-known phenomenon of zero deformation when the velocity reaches a maximum 
and vice vema. Pressure or velocity fields can be determined in a similar way to that 
followed for deformations. 
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FIQURE 7. Interface deformations (from cylindrical shape) of surrounded liquid bridges of 
slenderness A = 2.9 (solid line) and A = 1 (dashed line). First oscillation mode. 

I I U  
FIQURE 8. (a) Axial-velocity transverse profiles and (6) radial-velocity longitudinal profiles, in a 
surrounded liquid bridge of Slenderness A = 2.9 and wall position B = 2. First oscillation mode. 
Only half of the bridge is presented owing to symmetry. 

In figures 8-10 several velocity profiles are plotted for two bridges of different 
slenderness, one tall and the other short, in oscillation. As can be seen in figure 8, in 
the former case radial variations of axial velocity are small, except in the neighbour- 
hood of the disks near the interface (in both the inner and outer liquid), in which 
the axial velocity changes in sign. In the case of a short bridge, as shown in 
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FIQURE 9. (a) Axial-velocity transverse profiles and (a) radial-velocity longitudinal profiles, in & 

surrounded liquid bridge of slenderness A = 1 and wall position B = 2. First oscillation mode. Only 
half of the bridge is presented owing to symmetry. 

figures 9 and 10, the axial velocity and its radial variations are of the same order of 
magnitude all along the bridge, and the region in which w changes sign is larger and 
more important than in the previous case. 

Global features of the motion are the differences in sign between wo and d, whereas 
it remains the same within each medium, except in the aforementioned region near 
the contact line. In  the case of slender bridges, as shown in figure 8, longitudinal 
profiles of radial velocity are almost similar to the interface deformation, except near 
the disk, where the velocity has a non-zero value, although small if compared with 
the maximum value (of course a strict proportionality should exist between velocity 
profiles at  T = 1 and interface deformations). In  contrast, this phenomenon does not 
happen in short bridges, and clear differences arise between velocity profiles and 
bridge deformations; for instance, the velocity at the disks has a similar intensity to 
the maximum velocity, except in a small region near the interface. This fact appears 
clearly in figure 10. In slender bridges, except near to the disks, radial-velocity 
transverse profiles are linear, as assumed for the one-dimensional model - a charac- 
teristic which is lost in short bridges. 
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FIGURE LO. (a) Variation of axial velocity w with z-coordinate, for several values of r, inside the 
liquid bridge (solid line) and in the bath (dashed line), only half of the bridge is presented owing 
to  symmetry properties. (b) Variation of radial velocity u with r-coordinate, inside the bridge ( r  < 1) 
and in the bath ( r  > I ) ,  for several values of z/A. Wall position at B = 2. First oscillation mode. 
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FIQURE 11  (a). For description see opposite. 
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FIGURE 11. (a) Pulsation w versus wall position B and (b)  pulsation versus density ratio p,  compared 
with non-surrounded liquid-bridge pulsation w,,. First oscillation mode of a surrounded bridge of 
slenderness A .  Results obtained from several linearized models: three-dimensional (solid line), 
infinite columns (dashed line) and one-dimensional (doedashed line). 
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I n  a low-viscosity liquid the jump in w across the interface would give rise to a 
non-steady boundary layer on both sides of the interface, which accommodates the 
shear stress. 

4.3. Bath influence 
The influence of the outer liquid appears mainly in the time-dependent part of the 
solution. As shown in figure 11, the resonant frequency o decrease as the density 
ratio p increases or the wall position approaches the interface. In  contrast, in the 
space-dependent part of the solution for the interface deformation and the velocity 
field, shown in figures 7-10, the results obtained almost coincide in spite of the 
differences in the density ratio, whose small influence cannot be appreciated in these 
figures. The variation of B gives rise to  a modification of the velocity field within the 
bath, due to  the change in geometry, but i t  has no influence in the inner velocity field, 
as shown in figure 12. 

Additional details of bath influence should be pointed out. As shown in figure 11,  
the variation of w with B is quite clear, keeping almost constant for B > 3 and 
decaying from that value to zero as B approaches unity. This characteristic is 
explained by the exponential decay of the terms of Sn containing B, which is 
responsible for the fading away of the variation with B.  It suggests that  if walls were 
far from the bridge (meaning B - 2 or 3 - the validity limit of the one-dimensional 
model) the shape of the container would have no influence on the motion. 

The qualitative influence of the bath has already been explained in $3.2, and the 
main features remarked upon there remain the same for the three-dimensional model : 
the sharing of the interface energy by the inner and outer liquid implies a decreasing 
of the time exponent - the pulsation o as well as the growth factor y. 

4.4. Comparison between linear models 
Finally, the main results obtained from the three-dimensional model presented above 
(free-motion frequencies of the bridge and the outer-fluid influence), can be compared 
with the results deduced from other formulations: infinite columns (Bauer 1982) and 
the one-dimensional model ($3.2). 

The infinite-surrounded-column model, derived from capillary-jet theory (Rayleigh 
1945), towards which the Bauer model approaches when p + O ,  leads to  the following 
expression : 

(4.40) 

where n is the number of half-cycles of the interface deformation, and Sn is defined 
by (4.19), through which the influence of the bath parameters appears in the solution. 

The linearized one-dimensional model for non-surrounded liquid bridges derived 
by Meseguer (1983a) gives an implicit relationship between slenderness and non- 
surrounded liquid-bridge pulsation wo as follows : 

sinh 2aA sin 28A - 4 8  o,(cosh2 aA cos 2PA - cos2 PA) = 0, (4.41) 

where 2a2 = (1  + 8w$ - 1 and p" = 1 + a2. The generalization of this model to the case 
including the bath has been made in $ 3  and consists of a timescaling 

(4.42) 

I n  order to appreciate the differences between results obtained from these models, 
the variation of the pulsation w with A in the case of a non-surrounded bridge has 
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FIGURE 12. Radial variation of axial-velocity modulus, I w I ,  in the mean section (z = 0), inside the 
liquid bridge ( r  < 1) and in the bath ( r  > 1) for several values of wall position B. First oscillation 
mode. Liquid bridge slenderness A = 2.9. 

been plotted in figure 6, where i t  can be seen that the one-dimensional and 
three-dimensional models are in a good agreement within the range of applicability 
of the first model A / n  > 1. The results from Bauer, although they show the same 
behaviour as those from the three-dimensional model, are quite different in magnitude, 
because the infinite-column model satisfies the condition8 for non-anchored liquid 
bridges, which are less restrictive than conditions for anchored configurations. 

The influence on the pulsation w of the parameters A and B, for two bridges with 
large and small slenderness, is shown in figure 11. Predictions from the three models 
agree quite closely for large values of A and p - 1 , differences growing as A decreases 
and p increases. It can also be appreciated that, while in the three-dimensional and 
infinite-column models the bath influence on w remains constant for large values of 
B, in the one-dimensional model w tends to w,, as B increases, because in this model 
the bath effect disappears, since both the axial velocity and the kinetic energy 
absorbed by the bath decrease in the form 1/(B2- 1). As shown in figure 12, in the 
three-dimensional model, even if B is large, a region of the bath near the bridge is 
always in motion. The same figure shows the limit for the bath dimensions that should 
be satisfied for the one-dimensional model to be applicable; if B is small the radial 
variations of axial velocity will also be small, but if B increases they will become of 
the same order as the axial velocity, and the one-dimensional hypothesis will lose 
its basis. 

5. Experimental study 
The results derived from the linear models presented in $4 can be experimentally 

checked on Earth by using a simulated microgravity technique. This is possible 
because bath influence is taken into account in these models. Amongst theoretical 
results, the dependence of the eigenfrequencies of the surrounded liquid bridge on 
the slenderness has been chosen to be experimentally studied. 

5-2 
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FIGURE 13. Experimental arrangement: (a) tank; ( b )  exciting disk; (c) lower-disk turning pulley; 
(d )  injection disk; (e) motor; (f) eccentric; (9)  mixer; (h)  mixer shield; (i) injection duct. 

The method followed to find out the resonant frequencies consisted of determining 
the amplitude response of the interface deformation as a function of the oscillation 
frequency of one of the supporting disks. For small-enough viscous effects it could 
be assumed that the eigenfrequencies of the bridge almost coincided with the resonant 
frequencies of the forced system, at which the deformation amplitude reaches a 
maximum. This method was employed to determine the resonant frequencies of both 
non-surrounded millimetric liquid bridges (Fowle, Wang & Strong 1979 ; Elagin, 
Lebedev & Tsmelev 1982) and drops anchored to  a disk in a Plateau tank (Bisch, 
Lasek & Rodot 1982). 

5.1. Apparatus description 

The experiments were carried out in the Plateau Tank Facility (PTF) described in 
Martinez k Rivas (1982). The PTF had already been employed on previous occasions 
to  perform experiments in simulated microgravity by use of the neutral-buoyancy 
technique (Sanz 1983 ; Sanz & Martinez 1983 ; Meseguer & Sanz 1985). The P T F  allows 
the manipulation of liquid bridges, supplying the main movements that are needed 
to  perform a wide variety of experiments. Thus i t  is possible to move the injection 
disk axially, rotate both disks and even to  oscillate the lower disk, as can be seen 
in figure 13. The tank, which contained the bath for neutral buoyancy, was a box 
with rectangular cross-section, 140 mm x 60 mm sides and 140 mm height, with 
glass walls and perspex bottom. The tank top was closed by a plastic sheet to  reduce 
evaporation. 
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fRf  (Hz) 

A Mode 1 Mode 2 A, x los (m) T ("C) FR (Hz) D (min) 

1 .o 0.97 - 1.3 20.9 0.8-1.2 13 
1 .o 0.97 - 1.3 20.9 0.8-1.2 13 
1.1 0.82 - 1.3 20.9 0.6-1.0 14 
1.2 0.72 1.53 1.3 22.0 0.5-1.8 32 
1.3 0.62 - 1.3 23.0 0.4-1.0 16 
1.3 0.61 - 1.3 23.0 0.4-1.0 16 
1.5 0.45 1.06 1.3 22.0 0.4-1.2 38 
1.67 0.36 0.88 1.3 22.0 0.3-1.2 34 
1.8 0.30 0.75 1.3 24.0 0.1-1.6t 48 
2.0 - 0.62 1.3 20.9 0.5-0.8 15 
2.1 - 0.59 1.3 20.9 0.5-0.8 15 
1.2 0.75 1.55 2.3 20.5 0.6-1.7 37 
1.5 0.47 1.07 2.3 22.5 0.4-1.1 38 
1.8 0.31 0.76 2.3 25.0 0.2-0.9 35 

TABLE 2. Slenderness A ,  resonant frequency far, disk-oscillation amplitude A,, 
bath temperature T, frequency range FR, duration D. 

t In this sequence the photographs shown in figure 14 were taken. 

Wetting conditions were controlled through surface treatment of the disk lateral 
faces with an antispread barrier (FC-721 from 3M). Disks, of 30 mm diameter, were 
made of perspex and painted black to enhance visualization. The upper disk, 
supported by the injection tube, had an injection hole of 4 mm in diameter. The lower 
disk was mounted in a pin connected to an oscillator as shown in figure 13. With this 
arrangement, oscillatory motions of frequencies ranging from 0.1 to 2( f0.005) Hz 
could be obtained. 

The outer liquid waa a 1 : 2 methanol-water mixture, previously prepared by 
agitation and a later rest, to remove most of the air bubbles produced in the solution 
process. The liquid for the bridge, a dimethyl silicone oil with 20 x m2 s-l 
viscosity, (trend-labelled DMS 20, from Rhone-Poulenc 1978) wm coloured with 
yellow aniline dye to enhance visualization. Although the measured density of both 
liquids, the methanol-water mixture and the DMS 20, waspo = pi = 954 f0.6 kg mP3, 
the residual imbalance led to the cylindrical liquid bridges not having the necessary 
slenderness. Therefore a precise density matching was carried out before every 
experiment by adding either methanol or water to the bath. To this end the liquid 
bridge was used as a density indicator (Sanz & Martinez 1983). 

The management of the liquid for the bridge was performed with the aid of a syringe 
calibrated against a 0.2 cm9 graded burette. A magnetic stirrer was placed close to 
one of the lateral walls to homogenize concentration and temperature. The liquid 
bridge was protected against crossflow by placing a shield near the turning piece of 
the stirrer. 

As a temperature controlled bath was not available, measurements of the 
temperature (as shown in table 2) were made during experiments with the aim of 
evaluating the results obtained ; although the temperatures at which experiments were 
performed ranged between 20 and 25 "C, in each sequence this variation was less 
than 0.1 "C. 

The visualization system consisted of a stroboscopic lamp, a heat filter, a 
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FIGURE 14. Part 1. For caption see p. 131 
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FIGURE 14. Part 2. For caption see p. 131. 
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FIGURE 14. Part 3. For caption see opposite. 
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FIGURE 14. Selected photographs of an oscillation-scanning sequence. Liquid bridge of slenderness 
A = 1.8 surrounded by a density-matched liquid. Numbers show the exciting frequency imposed 
(Hz). First three resonant frequencies determined experimentally are 0.30, 0.75 and 1.29 Hz 
respectively. 
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background grid and a camera. A 3 x s flash-duration stroboscopic lamp 
(STROBOTAC 1531 A, General Radio Company), placed some 10 cm behind the rear 
tank wall, was synchronized with the disk oscillatory motion. The heat filter, 
consisting of a 1 cm thick water sheet, was placed between the lamp and the tank 
to reduce bath heating due to the illumination. A background grid, fixed to the tank 
rear pane, established a diffuse illumination and supplied reference lines for interface- 
deformation measurements. Furthermore, the optical effect produced at the interface, 
due to refractive-index differences between outer and inner liquids, helped during 
experimentation to visualize interface deformations. A 35 mm camera was placed 
some 50 cm in front of the tank, with an image-object scale of some 1 :2. The 
apparatus was placed inside a black room in order to avoid spurious illumination. 

As mentioned above, it was necessary to perform a precise density matching before 
each experiment, because very small density differences between inner and outer 
liquids caused appreciable interface deformations. If the tank had not been sealed 
completely the differences in evaporation rate between alcohol and water would give 
rise to a variation of the bath density with time, establishing a maximum allowable 
experimentation period based on the limitation of interface deformations due to 
growing hydrostatic effects. These deformations were always kept smaller than those 
involved in oscillations. Details can be found in Sanz (1983). 

5.2. Methods and results 

Once a liquid bridge of the required length was obtained, the oscillator was started 
up at a fixed frequency. After waiting some time to avoid transients and to obtain 
a regular oscillation, the camera shutter was opened and remained so till the film was 
sufficiently exposed by the light of the stroboscopic lamp. Depending on the 
oscillation frequency, between 8 and 16 flashes were needed. 

This process was repeated at constant liquid-bridge length, for slightly increased 
values of the imposed oscillation frequency. A selection of the photographs obtained 
in a typical scanning is shown in figure 14, where the first three modes of the interface 
deformation can be appreciated. In figure 15 the interface-deformation amplitudes 
measured from the images taken are plotted against the excitation frequency, in 
experiments performed with liquid bridges of several slendernesses. The maxima 
observed, sharp for first and smoother for second modes, are sufficient to deduce the 
corresponding resonant frequencies with an error of f0.02 Hz. 

The value of the deformation amplitude is taken as the mean of the maximum and 
minimum deformations measured on each image. To perform these measurements the 
image contained on the 35 mm film was enlarged some seven times with respect to 
the object. At the same axial sections, together with the maximum and minimum 
deformations, the distance between reference lines of the background grid was 
measured to obtain amplitude data and to perform the geometrical corrections needed 
owing to the optical arrangement. The errors in the deformations are of +0.08 mm 
at the object plane. 

The existence of in delay between the excitation and the response of the liquid 
bridge was realized during the synchronization process. It could be explained in the 
following way: as can be deduced from the study of the problem using the 
three-dimensional inviscid model, maximum interface deformations should coincide 
with the moments at which the velocity, particularly at  the disk, is null, which happen 
at the extreme positions of the oscillation travel. However, in experiments, the 
maximum deformations arose close to the mean point of the disk travel, giving rise 
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FIGURE 15. Ratio of deformation amplitude A to excitation amplitude A ,  versus excitation 
frequency f, of several liquid bridges surrounded by a density-matched liquid: (a) A = 1.5, 
A,  = 1.3 mm; (b)  A = 1.8, A,  = 1.3 mm. 

to this approximate ?jn delay. The value of this delay is the same as that of the forced 
response of a linear oscillator with low damping. Excitative force and oscillation 
amplitude are in phase only if no damping exists. If dissipation is low, the resonant 
frequencies are close to the eigenfrequencies of the non-damped oscillator, and the 
delay at  these frequencies is about $. 

With the aid of amplitude-versus-frequency plots (as in figure 15) the resonant fre- 
quencies were determined for several values of A (table 2). The largest influence of the 
excitation amplitude on the variation of the deformation amplitude with the imposed 
frequency, for the values shown in table 2, is of some 4 % for the lowest slenderness 
(A = 1.2). So we consider as valid the values obtained with the smallest amplitude 
tried, A, = 1.3 mm. This amplitude is the minimum advisable to obtain deformation 
measurements with a reasonable error. The maximum interface deformations pro- 
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FIGURE 16. Pulsation w versus slenderness A of a density-matched surrounded liquid bridge for 
several values of wall position B, obtained from linearized models : three-dimensional (solid line), 
infinite columns (dashed line) and one-dimensional (dot-dashed line). Experimental results of 
table 2, made dimensionless with (5.1): 0, first mode; 0 ,  second mode. 

duced by the excitation amplitude tried are of the order of 17 % of the radius, so that 
the results obtained are appropriate for comparison with those from linearized 
theoretical models. Measurements have been reduced according to the expression 

where wXi is the experimental dimensionless pulsation and f R i  stands for the ith 
resonant frequency measured. u is determined in the Appendix. Results are shown 
in figure 16. The experimental limit values of A are established, at low frequencies, 
by the oscillator range and viscous effects (large A,  small a), and by amplitude- 
measuring limitations at high frequencies (small A).  

5.3. Comparison between experiments and theory 
The experimental results have been compared with the following linear models: the 
infinite-column model (Bauer 1982), the one-dimensional model developed in 53.2 and 
the three-dimensional model described in 4, whose results in the experimental range 
are plotted in figure 16. 

The first point is that experimental and theoretical configurations are not identical. 
In  the latter the cross-section of the tank is a circle, while in the experimental set-up 
it is rectangular (walls placed at B = 2 and B = 4.67 respectively) owing to the optical 
arrangement. However, when the experiment was designed, it was considered that 
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FIQURE 17. Variation of pulsation w with slenderness A in the first oscillation modes of liquid 
bridges : non-surrounded (dashed line), and surrounded by a density-matched liquid (solid line). 
The wall is placed at B = 4. Results obtained from linearized models: F, Fowle et al. (1979); T, 
three-dimensional. Figures indicate the oscillation modes (number of half-waves in the interface 
deformation). Experimental results: 0, Fowle; 0, from table 2 and made dimensionless with 
CT = 17.0 x lod3 N m-l. 

the rectangular shape would not be a problem, as far as predictions from the 
three-dimensional and Bauer’s models are concerned. In these models the influence 
of the wall position remains constant for large values of B, as shown in figures 11 
and 16. Another difference is the position of the bounding walls at z = f A. Because 
of physical constraints these walls were placed some 10 rnm from the surface of the 
disks, instead of at  the very surface. To take account of this modification in the 
theoretical formulation would be very difficult, so this could have been a source of 
discrepancy between theory and experiments. Nevertheless, such a discrepancy 
should be small since the kinetic energy transferred to this region of the bath is also 
small, owing to the proximity of the walls. 

Experimental and theoretical results from Fowle et aZ. (1979), shown in figure 17, 
are treated separately, as they correspond to non-surrounded liquid bridges. The 
theoretical model of Fowle et al. yields the following expression : 

where s = 2 (or 1) for symmetric (or antisymmetric) deformations, and 1, = 4 2 A .  
To obtain (5 .2)  some assumptions, whose validity is not clear, are introduced in this 
model. As a consequence one of the main characteristics of the problem, the existence 
of the stability limit in the first mode at A = x is not predicted. However, the 
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behaviour of results from this model, for small values of A and the first two oscillation 
modes, seems to be in agreement with those from the three-dimensional model. 
Surprisingly, experimental results from Fowle et al. are in agreement with the 
prediction from the three-dimensional model for the case of a liquid bridge surrounded 
by a density-matched bath, at least for the first modes and at low frequencies. 

6. Conclusions 
The main effects due to the presence of an outer liquid in both breaking process 

and oscillation motions of liquid bridges have been considered. Theoretical support 
for experimental results on liquid-bridge dynamics from using the Plateau-tank 
technique has been developed, valid within the range of applicability of the studies 
here performed. Additional efforts should be devoted to the evaluation of the 
influence of the outer bath in experiments in which rotation of the disks is involved. 

The nonlinear model developed in this paper allows us to perform the computation 
of breaking processes. Amongst other results, it can be pointed out that bath effects 
slightly modify partial breaking volumes, in current experiments. Thus partial 
volumes are a valuable candidate for experimental checking of the ODIS model both 
under simulated microgravity conditions (as in Meseguer & Sanz 1985) and in Space. 
Experimental checking of the temporal evolution is more complex owing to the 
difficulty of imposing on a liquid bridge the initial perturbations more appropriate 
from a numerical point of view, initial conditions having a strong influence 
on breaking times. The validity of the one-dimensional model is restricted by (3.2) 
and (3.3). 

A double approach has been followed to study oscillatory motions of surrounded 
liquid bridges. First, a linear three-dimensional model of the problem, accounting for 
the outer liquid, has been developed. As a consequence of the fact that the influence 
of wall position remains almost constant for large values of the wall-liquid-bridge 
distance, the tank shape would not have significant influence if its lateral walls are 
far enough apart from the liquid-bridge axis. This conclusion allows simplification 
of the experimental set-up. 

In a second approach, an experimental method to measure the resonant frequencies 
of liquid bridges has been developed. The results obtained have been used for 
evaluating several theoretical models, although a relaxed shape for the tank is 
assumed. The three-dimensional model, which retains the appropriate boundary 
conditions and minimum simplifications, offers better agreement with experiments 
in the range checked. The results from the one-dimensional model in the first mode 
coincide quite well for A > 2 with those from the three-dimensional model, as is shown 
in figures 6 and 16. This bound on A can be considered as a validity limit of the 
one-dimensional model in studying linear oscillations. A similar value is obtained in 
the case of breaking processes (Meseguer et al. 1983). 

As an additional result, a method based on measuring the resonant frequencies of 
a liquid bridge seems to be useful for determination of surface tension in a 
microgravity environment, in which classical methods based on gravity effects are 
not applicable. 

To conclude, some considerations on the viscosity effects should be made. The usual 
criterion to consider unsteady flows as inviscid is that the ratio of inertial to viscous 
terms in the Navier-Stokes equations, St Re = A2SL/v $- 1, where St and Re are the 
Strouhal and Reynolds number, h is a characteristic length (the length of the bridge 
in a breaking process, or the wavelength in oscillations), SZ is the dimensional 
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pulsation or growth factor and v is the kinematic viscosity. In the case of oscillation 
(first mode, A % R )  

In the experiments reported here the lowest value of St Re = 1.5 x lo2 ( A  = 1.2, 
SZ = 9.6 rad/s, A = 18 cm). In  a general case, if SZ-tO ( A + x ,  B+1 or p+m), 
this number is greatly reduced, and the assumption of inviscid flow would no longer 
be valid. 
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(UPM). I wish to thank Professor I. Da-Riva, Dr J. M. Vega and Dr J. Meseguer for 
helpful discussions. 

Appendix. Determination of the interface tension between density-matched 

To make dimensionless the experimental results obtained, it is necessary to know 
the value of the interface tension u (5.1). Owing to the lack of data in the literature 
on the interface tension between the liquids used, it has to be measured. 

There are several methods to determine experimentally the value of u in the case 
of liquid interfaces. The pendant-drop method can be employed for liquid-liquid 
interfaces only if the liquids have appreciable differences in density. In experiments 
in a Plateau tank, some authors use this method aided by interpolation (Carruthers 
& Grasso 1972; Tagg et al. 1980; Bisch et al. 1982). If the viscosity is high this 
interpolation is not very reliable, as shown by Tagg et al. and Bisch et al. Another 
method, developed by Princen, Zia & Mason (1967), is based on the measurement 
of the interface deformations of liquids or air drops submerged in another liquid ; the 
deformation is produced by the rotation of the whole configuration. This method is 
particularly useful for viscous systems, but it also needs a density difference to cause 
deformations. 

A method that in principle does not require such density differences and is therefore 
applicable to density-matched liquids (based on the measurement of the wavelength 
of capillary waves induced at an interface) has been developed by Milgram & Bradley 
(1971) and employed with the couple mineral-oil-water (whose densities are quite 
different). Results obtained show values of B with errors of some 10 yo, caused by 
visualization problems which have an important influence on the wavelength- 
measurement process. These problems grow as the density difference decreases 
(Meseguer 1983, private communication). 

In  the experimental study presented here, CT was determined by using a variation 
of the bubble method. A drop of oil was formed at  the tip of a capillary tube, 
submerged in the outer liquid. The pressure inside the drop was controlled by 
changing the height of a burette connected to the capillary. The height was measured 
with the micrometer screw, which positioned the burette, and the size of the cap at 
the tip with a microscope. Let Zd be the cap size and h the difference in level between 
the liquid of tank and the burette, made dimensionless with the capillary radius 
R, = 0.55 mm (figure 18). The relationship between Zd and h is 

liquids 

'd y = - = p 0 ,  h 
1+1; 
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FIGURE 18. Interface-tension measurements. Correlation between experimental data and theoretical 
predictions (A 1). Z,, cap height; h, difference in level between the liquid outside and inside the 
capillary. Lengths are made dimensionless with the capillary radius. Dashed line, linear regression. 

where Bo, = pigRt/cr is the Bond number associated with the capillary phenomena. 
Experimental results are shown in figure 18, together with a linear regression between 
y and h, from which the following values can be obtained : 

Bo; = (16.7kO.l) x (T = (17.0+0.l)x N m-l. 

The lack of data concerning interface tension does not allow an extensive 
comparative study. The only data that have been found are related to interfaces 
between density-matched methanol-water mixtures and DMS 5 and DMS 10 (Bisch 
et a2. 1982), whose values are cr = 7 x N m-l, (T = 14 x lod3 N m-l respectively, 
obtained by the aforementioned pendant-drop and interpolation method. The value 
obtained by using the bubble method is larger than that corresponding to  DMS 10, 
which is in agreement with the correlation between viscosity and interface tension 
shown by the data from Bisch et al. 
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